Java 并发编程之 ConcurrentHashMap 1.8 源码分析
Java juc About 8,242 wordsForwarding node
扩容时如果某个索引位置的节点迁移完毕,用ForwardingNode
作为旧table
的头节点。
get
spread
方法保证获取到的hash
码为正数,因为,负数用做了ForwardingNode
和TreeBin
的标志位。
(eh = e.hash) == h
如果hash
相同则直接替换value
。
eh < 0
如果是负数,就去新的table
中找这个key
,或者去树中找这个key
。
while
循环中是正常的链表中查找。
public V get(Object key) {
Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
int h = spread(key.hashCode());
if ((tab = table) != null && (n = tab.length) > 0 &&
(e = tabAt(tab, (n - 1) & h)) != null) {
if ((eh = e.hash) == h) {
if ((ek = e.key) == key || (ek != null && key.equals(ek)))
return e.val;
}
else if (eh < 0)
return (p = e.find(h, key)) != null ? p.val : null;
while ((e = e.next) != null) {
if (e.hash == h &&
((ek = e.key) == key || (ek != null && key.equals(ek))))
return e.val;
}
}
return null;
}
put
f
是链表头节点,fh
是链表头节点的hash
。
CAS
初始化数组,初始化完成后再次进入for
循环。
如果头节点为空,则CAS
占据头节点,失败,说明已经有人抢占头节点了,则再进入for
循环。
此时判断头节点是不是在扩容移动状态,如果是就帮助扩容,之后再次进入for
循环。
如果当前不是处在扩容,头节点也已经有值了(即:hash
冲突了,往链表或树中put
)。使用synchronized
锁住头节点。
tabAt(tab, i) == f
:确认头节点没有发生扩容而移动。
fh >= 0
:如果是普通节点,相同更新,不同追加到链表尾部。
f instanceof TreeBin
:如果是红黑树,则放入红黑树。
synchronized
释放后判断下链表大小是否需要转换为红黑树。
final V putVal(K key, V value, boolean onlyIfAbsent) {
if (key == null || value == null) throw new NullPointerException();
int hash = spread(key.hashCode());
int binCount = 0;
for (Node<K,V>[] tab = table;;) {
Node<K,V> f; int n, i, fh;
if (tab == null || (n = tab.length) == 0)
// 创建数组,使用了 cas
tab = initTable();
else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
// 头节点为空,则使用 cas 创建
if (casTabAt(tab, i, null,
new Node<K,V>(hash, key, value, null)))
break; // no lock when adding to empty bin
}
else if ((fh = f.hash) == MOVED)
// 帮忙扩容
tab = helpTransfer(tab, f);
else {
V oldVal = null;
synchronized (f) {
if (tabAt(tab, i) == f) {
if (fh >= 0) {
binCount = 1;
for (Node<K,V> e = f;; ++binCount) {
K ek;
if (e.hash == hash &&
((ek = e.key) == key ||
(ek != null && key.equals(ek)))) {
oldVal = e.val;
if (!onlyIfAbsent)
e.val = value;
break;
}
Node<K,V> pred = e;
if ((e = e.next) == null) {
pred.next = new Node<K,V>(hash, key,
value, null);
break;
}
}
}
else if (f instanceof TreeBin) {
Node<K,V> p;
binCount = 2;
if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
value)) != null) {
oldVal = p.val;
if (!onlyIfAbsent)
p.val = value;
}
}
}
}
if (binCount != 0) {
if (binCount >= TREEIFY_THRESHOLD)
treeifyBin(tab, i);
if (oldVal != null)
return oldVal;
break;
}
}
}
addCount(1L, binCount);
return null;
}
sizeCtl
初始化为-1
扩容时为-(1+ 扩容线程数)
初始化完成或扩容完成时为,下一次扩容的阈值
initTable
将sizeCtl
从正数改为-1
,
(sc = sizeCtl) < 0
:如果sizeCtl
小于0
,则让出CPU
执行权。继续while
循环直到初始化数组完成。
finally
中的sizeCtl = sc
是赋值新阈值。
private final Node<K,V>[] initTable() {
Node<K,V>[] tab; int sc;
while ((tab = table) == null || tab.length == 0) {
if ((sc = sizeCtl) < 0)
Thread.yield(); // lost initialization race; just spin
else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
try {
if ((tab = table) == null || tab.length == 0) {
int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
@SuppressWarnings("unchecked")
Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
table = tab = nt;
sc = n - (n >>> 2);
}
} finally {
sizeCtl = sc;
}
break;
}
}
return tab;
}
addCount
与LongAdder
中实现差不多,都是使用累加单元和base
单元。
当check >= 0
时需要扩容,
U.compareAndSwapInt(this, SIZECTL, sc, (rs << RESIZE_STAMP_SHIFT) + 2)
:将sizeCtl
改为负数,表示进入扩容状态。
U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)
:帮忙扩容
private final void addCount(long x, int check) {
CounterCell[] as; long b, s;
if ((as = counterCells) != null ||
!U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
CounterCell a; long v; int m;
boolean uncontended = true;
if (as == null || (m = as.length - 1) < 0 ||
(a = as[ThreadLocalRandom.getProbe() & m]) == null ||
!(uncontended =
U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
fullAddCount(x, uncontended);
return;
}
if (check <= 1)
return;
s = sumCount();
}
if (check >= 0) {
Node<K,V>[] tab, nt; int n, sc;
while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
(n = tab.length) < MAXIMUM_CAPACITY) {
int rs = resizeStamp(n);
if (sc < 0) {
if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
transferIndex <= 0)
break;
// new table 已经创建,帮忙扩容
if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
transfer(tab, nt);
}
// 需要扩容,未创建 new table
else if (U.compareAndSwapInt(this, SIZECTL, sc,
(rs << RESIZE_STAMP_SHIFT) + 2))
transfer(tab, null);
s = sumCount();
}
}
}
transfer
(f = tabAt(tab, i)) == null
:如果链表头已经处理完了,就将链表头赋值为ForwardingNode
。
(fh = f.hash) == MOVED
:如果已经是ForwardingNode
了,表示已经移动完成。
如果是有元素的就synchronized
锁住头节点进行处理。
private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
int n = tab.length, stride;
if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
stride = MIN_TRANSFER_STRIDE; // subdivide range
if (nextTab == null) { // initiating
try {
@SuppressWarnings("unchecked")
Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
nextTab = nt;
} catch (Throwable ex) { // try to cope with OOME
sizeCtl = Integer.MAX_VALUE;
return;
}
nextTable = nextTab;
transferIndex = n;
}
int nextn = nextTab.length;
ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
boolean advance = true;
boolean finishing = false; // to ensure sweep before committing nextTab
for (int i = 0, bound = 0;;) {
Node<K,V> f; int fh;
// ...
if (i < 0 || i >= n || i + n >= nextn) {
// ...
}
else if ((f = tabAt(tab, i)) == null)
advance = casTabAt(tab, i, null, fwd);
else if ((fh = f.hash) == MOVED)
advance = true; // already processed
else {
synchronized (f) {
// ...
}
}
}
}
————        END        ————
Give me a Star, Thanks:)
https://github.com/fendoudebb/LiteNote扫描下方二维码关注公众号和小程序↓↓↓