Java 并发编程之 AQS ReentrantLock 非公平锁源码解析
Java juc AQS About 6,141 words说明
本文基于Java11
。
部分源码
// java.util.concurrent.locks.AbstractQueuedSynchronizer
public final void acquire(int arg) {
if (!tryAcquire(arg) &&
acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
selfInterrupt();
}
private transient volatile Node head;
private transient volatile Node tail;
private volatile int state;
private Node addWaiter(Node mode) {
Node node = new Node(mode);
for (;;) {
Node oldTail = tail;
if (oldTail != null) {
// 将新节点的 prev 字段设置为老的 node 节点
node.setPrevRelaxed(oldTail);
// 将 tail 字段设置为 node
if (compareAndSetTail(oldTail, node)) {
// CAS 设置成功后,将老的 node 节点的 next 字段设置为新的节点
oldTail.next = node;
return node;
}
} else {
initializeSyncQueue();
}
}
}
private final void initializeSyncQueue() {
Node h;
if (HEAD.compareAndSet(this, null, (h = new Node())))
tail = h;
}
private final boolean compareAndSetTail(Node expect, Node update) {
return TAIL.compareAndSet(this, expect, update);
}
/*
+------+ prev +-----+ +-----+
head | | <---- | | <---- | | tail
+------+ +-----+ +-----+
*/
static final class Node {
static final Node EXCLUSIVE = null;
volatile int waitStatus;
volatile Node prev;
volatile Node next;
volatile Thread thread;
Node nextWaiter;
final void setPrevRelaxed(Node p) {
// Unsafe/VarHandle set prev
PREV.set(this, p);
}
}
tryAcquire()
尝试获取锁,返回了true
说明上锁成功,失败后进行acquireQueued
入队操作。
入队操作前先进行addWaiter
初始化等待节点。
ReentrantLock
中的非公平锁的实现。
// java.util.concurrent.locks.ReentrantLock.Sync
static final class NonfairSync extends Sync {
private static final long serialVersionUID = 7316153563782823691L;
protected final boolean tryAcquire(int acquires) {
return nonfairTryAcquire(acquires);
}
}
@ReservedStackAccess
final boolean nonfairTryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
if (c == 0) {
if (compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
else if (current == getExclusiveOwnerThread()) {
int nextc = c + acquires;
if (nextc < 0) // overflow
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}
getState()
获取当前锁的状态赋值给变量c
。
如果c
为0
表示没有人上锁使用CAS
修改状态值竞争锁并且设置独占锁线程为当前线程,返回true
,CAS
失败返回false
准备入等待队列。
如果c
不为0
判断是否是当前线程持有了锁,如果是,则锁重入,设置新的状态值,ReentrantLock
最大的锁重入次数是Integer
的最大值。
加入等待队列时head
节点为哨兵节点,哨兵节点的next
字段指向需要入队的新节点,tail
节点指向入队的新节点。
// java.util.concurrent.locks.AbstractQueuedSynchronizer
final boolean acquireQueued(final Node node, int arg) {
boolean interrupted = false;
try {
for (;;) {
final Node p = node.predecessor();
if (p == head && tryAcquire(arg)) {
setHead(node);
p.next = null; // help GC
return interrupted;
}
if (shouldParkAfterFailedAcquire(p, node))
interrupted |= parkAndCheckInterrupt();
}
} catch (Throwable t) {
cancelAcquire(node);
if (interrupted)
selfInterrupt();
throw t;
}
}
private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
int ws = pred.waitStatus;
if (ws == Node.SIGNAL)
/*
* This node has already set status asking a release
* to signal it, so it can safely park.
*/
return true;
if (ws > 0) {
/*
* Predecessor was cancelled. Skip over predecessors and
* indicate retry.
*/
do {
node.prev = pred = pred.prev;
} while (pred.waitStatus > 0);
pred.next = node;
} else {
/*
* waitStatus must be 0 or PROPAGATE. Indicate that we
* need a signal, but don't park yet. Caller will need to
* retry to make sure it cannot acquire before parking.
*/
pred.compareAndSetWaitStatus(ws, Node.SIGNAL);
}
return false;
}
private final boolean parkAndCheckInterrupt() {
LockSupport.park(this);
return Thread.interrupted();
}
正式加入队列前,还会将节点的前一个节点的waitStatus
由0
改为-1
。
ReentrantLock
的lock()
方法为不可能打断模式,外部调用Thread
的interrupte()
方法,只是会再次进行acquireQueued
抢夺锁,但基本都是再次进入LockSupport
的park()
方法。
public final boolean release(int arg) {
if (tryRelease(arg)) {
Node h = head;
if (h != null && h.waitStatus != 0)
unparkSuccessor(h);
return true;
}
return false;
}
@ReservedStackAccess
protected final boolean tryRelease(int releases) {
int c = getState() - releases;
if (Thread.currentThread() != getExclusiveOwnerThread())
throw new IllegalMonitorStateException();
boolean free = false;
if (c == 0) {
free = true;
setExclusiveOwnerThread(null);
}
setState(c);
return free;
}
private void unparkSuccessor(Node node) {
/*
* If status is negative (i.e., possibly needing signal) try
* to clear in anticipation of signalling. It is OK if this
* fails or if status is changed by waiting thread.
*/
int ws = node.waitStatus;
if (ws < 0)
node.compareAndSetWaitStatus(ws, 0);
/*
* Thread to unpark is held in successor, which is normally
* just the next node. But if cancelled or apparently null,
* traverse backwards from tail to find the actual
* non-cancelled successor.
*/
Node s = node.next;
if (s == null || s.waitStatus > 0) {
s = null;
for (Node p = tail; p != node && p != null; p = p.prev)
if (p.waitStatus <= 0)
s = p;
}
if (s != null)
LockSupport.unpark(s.thread);
}
释放锁时,将Sync
的state
改为0
(暂时不考虑重入的情况),将头节点的waitStatue
改为0
,并unpark
头节点的下一个节点。
当释放锁后,acquireQueued
中原先停在了parkAndCheckInterrupt
代码,被unpark
后继续执行,for
循环中已经是前驱节点是头节点了,在tryAcquire
抢得锁后,将当前节点设置为头节点,意味着上锁成功,继续执行锁中的代码。
————        END        ————
Give me a Star, Thanks:)
https://github.com/fendoudebb/LiteNote扫描下方二维码关注公众号和小程序↓↓↓