Prometheus+Alertmanager 搭建告警系统

Prometheus Alertmanager DevOps About 7,061 words

Prometheus 配置文件

prometheus.yml

global:
  scrape_interval: 15s # Set the scrape interval to every 15 seconds. Default is every 1 minute.
  evaluation_interval: 15s # Evaluate rules every 15 seconds. The default is every 1 minute.
  # scrape_timeout is set to the global default (10s).

# Alertmanager configuration
alerting:
  alertmanagers:
    - static_configs:
        - targets:
          - 192.168.0.100:9093

# Load rules once and periodically evaluate them according to the global 'evaluation_interval'.
rule_files:
  # - "first_rules.yml"
  # - "second_rules.yml"
  - "/etc/prometheus/alert_rules.yml"

scrape_configs:
  - job_name: "prometheus"
    static_configs:
      - targets: ["localhost:9090"]

告警规则

alert_rules.yml:配置在prometheus.ymlrule_files节点下。

groups:
- name: example # 定义规则组
  rules:
  - alert: InstanceDown  # 定义报警名称
    expr: up == 0   #Promql语句,触发规则
    for: 15s            # 15 秒
    labels:       # 标签定义报警的级别和主机
      name: instance
      severity: Critical
    annotations:  #注解
      summary: "Instance {{ $labels.instance }} down" # 报警摘要
      description: "{{ $labels.instance }} of job {{ $labels.job }} has been down for more than 15 seconds."   # 报警信息
      value: "{{ $value }}%"  # 当前报警状态值
- name: Host
  rules:
  - alert: HostMemory Usage
    expr: (node_memory_MemTotal_bytes - (node_memory_MemFree_bytes + node_memory_Buffers_bytes + node_memory_Cached_bytes)) / node_memory_MemTotal_bytes * 100 >  80
    for: 1m
    labels:
      name: Memory
      severity: Warning
    annotations:
      summary: " {{ $labels.job }} "
      description: "宿主机内存使用率超过80%."
      value: "{{ $value }}"
  - alert: HostCPU Usage
    expr: sum(avg without (cpu)(irate(node_cpu_seconds_total{mode!='idle'}[5m]))) by (instance,job) > 0.65
    for: 1m
    labels:
      name: CPU
      severity: Warning
    annotations:
      summary: " {{ $labels.job }} "
      description: "宿主机CPU使用率超过65%."
      value: "{{ $value }}"
  - alert: HostLoad 
    expr: node_load5 > 4
    for: 1m
    labels:
      name: Load
      severity: Warning
    annotations:
      summary: "{{ $labels.job }} "
      description: " 主机负载5分钟超过4."
      value: "{{ $value }}"
  - alert: HostFilesystem Usage
    expr: 1-(node_filesystem_free_bytes / node_filesystem_size_bytes) >  0.8
    for: 1m
    labels:
      name: Disk
      severity: Warning
    annotations:
      summary: " {{ $labels.job }} "
      description: " 宿主机 [ {{ $labels.mountpoint }} ]分区使用超过80%."
      value: "{{ $value }}%"
  - alert: HostDiskio
    expr: irate(node_disk_writes_completed_total{job=~"Host"}[1m]) > 10
    for: 1m
    labels:
      name: Diskio
      severity: Warning
    annotations:
      summary: " {{ $labels.job }} "
      description: " 宿主机 [{{ $labels.device }}]磁盘1分钟平均写入IO负载较高."
      value: "{{ $value }}iops"
  - alert: Network_receive
    expr: irate(node_network_receive_bytes_total{device!~"lo|bond[0-9]|cbr[0-9]|veth.*|virbr.*|ovs-system"}[5m]) / 1048576  > 3 
    for: 1m
    labels:
      name: Network_receive
      severity: Warning
    annotations:
      summary: " {{ $labels.job }} "
      description: " 宿主机 [{{ $labels.device }}] 网卡5分钟平均接收流量超过3Mbps."
      value: "{{ $value }}3Mbps"
  - alert: Network_transmit
    expr: irate(node_network_transmit_bytes_total{device!~"lo|bond[0-9]|cbr[0-9]|veth.*|virbr.*|ovs-system"}[5m]) / 1048576  > 3
    for: 1m
    labels:
      name: Network_transmit
      severity: Warning
    annotations:
      summary: " {{ $labels.job }} "
      description: " 宿主机 [{{ $labels.device }}] 网卡5分钟内平均发送流量超过3Mbps."
      value: "{{ $value }}3Mbps"
- name: Container
  rules:
  - alert: ContainerCPU Usage
    expr: (sum by(name,instance) (rate(container_cpu_usage_seconds_total{image!=""}[5m]))*100) > 60
    for: 1m
    labels:
      name: CPU
      severity: Warning
    annotations:
      summary: "{{ $labels.name }} "
      description: " 容器CPU使用超过60%."
      value: "{{ $value }}%"
  - alert: ContainerMem Usage
#    expr: (container_memory_usage_bytes - container_memory_cache)  / container_spec_memory_limit_bytes   * 100 > 10  
    expr:  container_memory_usage_bytes{name=~".+"}  / 1048576 > 1024
    for: 1m
    labels:
      name: Memory
      severity: Warning
    annotations:
      summary: "{{ $labels.name }} "
      description: " 容器内存使用超过1GB."
      value: "{{ $value }}G"

Alertmanager 配置文件

alertmanager.ymlAlertmanager启动时指定的配置文件。

global:
  resolve_timeout: 5m
  smtp_from: 'xxxxxxxx@qq.com' # 发件人
  smtp_smarthost: 'smtp.qq.com:465' # 邮箱服务器的 POP3/SMTP 主机配置 smtp.qq.com 端口为 465 或 587
  smtp_auth_username: 'xxxxxxxx@qq.com' # 用户名
  smtp_auth_password: 'xxxxxxxxxxxxxxx' # 授权码 不是 QQ 密码
  smtp_require_tls: false
  smtp_hello: 'qq.com'
templates:
  - '/etc/alertmanager/template/alert.tmpl'
route:
  group_by: ['alertname'] # 告警分组
  group_wait: 5s # 在组内等待所配置的时间,如果同组内,5 秒内出现相同报警,在一个组内出现。
  group_interval: 5m # 如果组内内容不变化,合并为一条警报信息,5 分钟后发送。
  repeat_interval: 5m # 发送告警间隔时间 s/m/h,如果指定时间内没有修复,则重新发送告警
  receiver: 'wechat' # 优先使用 wechat 发送
  routes: #子路由,使用 email 发送
  - receiver: email
    match_re:
      serverity: email
receivers:
- name: 'email'
  email_configs:
  - to: 'xxxxxxxx@163.com' # 如果想发送多个人就以 ',' 做分割
    send_resolved: true
- name: 'wechat'
  wechat_configs:
  - corp_id: 'xxxxxxxxxxxxx' #企业 ID
    api_url: 'https://qyapi.weixin.qq.com/cgi-bin/' # 企业微信 api 接口 统一定义
    to_party: '2'  # 通知组 ID
    agent_id: '1000002' # 新建应用的 agent_id
    api_secret: 'xxxxxxxxxxxxxx' # 生成的 secret
    send_resolved: true
inhibit_rules:
  - source_match:
      severity: 'critical'
    target_match:
      severity: 'warning'
    equal: ['alertname', 'dev', 'instance']

说明:smtp_require_tls是否使用tls,根据环境不同,来选择开启和关闭。如果提示报错email.loginAuth failed: 530 Must issue a STARTTLS command first,那么就需要设置为true。着重说明一下,如果开启了tls,提示报错starttls failed: x509: certificate signed by unknown authority,需要在email_configs下配置insecure_skip_verify: true来跳过tls验证。

验证告警路由

https://www.prometheus.io/webtools/alerting/routing-tree-editor

告警模板

alert.tmpl:配置在alertmanager.yml中的templates下。

自定义模板

{{ define "wechat.default.message" }}
{{ range $i, $alert :=.Alerts }}
========监控报警==========
告警状态:{{   .Status }}
告警级别:{{ $alert.Labels.severity }}
告警类型:{{ $alert.Labels.alertname }}
告警应用:{{ $alert.Annotations.summary }}
告警主机:{{ $alert.Labels.instance }}
告警详情:{{ $alert.Annotations.description }}
触发阀值:{{ $alert.Annotations.value }}
告警时间:{{ $alert.StartsAt.Format "2006-01-02 15:04:05" }}
========end=============
{{ end }}
{{ end }}

默认模板

https://github.com/prometheus/alertmanager/blob/main/template/default.tmpl

说明

Prometheus Alert告警状态有三种状态:InactivePendingFiring

  • Inactive:非活动状态,表示正在监控,但是还未有任何告警触发。
  • Pending:表示这个告警必须被触发。由于告警可以被分组、压抑/抑制或静默/静音,所以等待验证,一旦所有的验证都通过,则将转到Firing状态。
  • Firing:将告警发送到Alertmanager,它将按照配置将告警的发送给所有接收者。一旦告警解除,则将状态转到Inactive,如此循环。

相关地址

Prometheus Alerts - http://localhost:9090/alerts

Prometheus Rules - http://localhost:9090/rules

Alertmanager - http://localhost:9093

官方文档

https://prometheus.io/docs/prometheus/latest/configuration/alerting_rules

https://prometheus.io/docs/alerting/latest/configuration

Views: 2,109 · Posted: 2022-03-02

————        END        ————

Give me a Star, Thanks:)

https://github.com/fendoudebb/LiteNote

扫描下方二维码关注公众号和小程序↓↓↓

扫描下方二维码关注公众号和小程序↓↓↓


Today On History
Browsing Refresh